

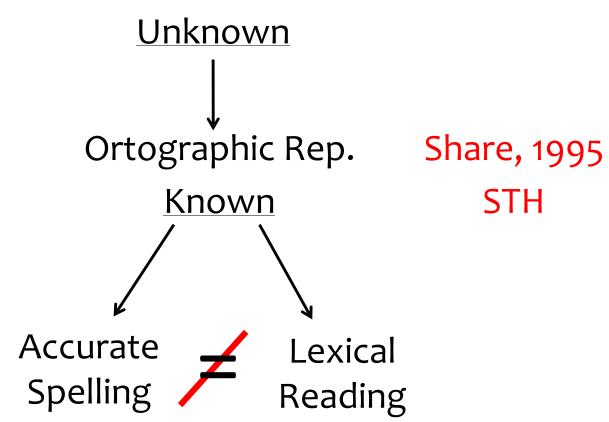
Orthographic Learning: One unitary system or two separate constructs (reading vs. spelling)?

Eduardo Onochie Quintanilla (Universidad de Cádiz)

José Ignacio Navarro Guzmán (Universidad de Cádiz)

Marie Lallier (Basque Centre on Cognition, Brain & Language)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 892111


Dysfluent Reading

- Transparent orthographies (Spanish, German, etc.)
- Dyslexia = characterized by dysfluent reading
- Overreliance on decoding
- ¿Resulting from a failure to create orth reps?

How is it that we build orthographic representations?

Orthographic Learning (OL) Self Teaching Hypothesis

Orthographic Representation of Word

Ortographic Lexicon

OL-Spelling vs. OL-Reading

Self-Teaching Paradigm

No Naming Speed OL

- Share (1999)
- Share (2004)
- Share & Shalev (2004)
- Kyte & Johnson (2006)

NS r between OLS & OLR

- de Jong et al. (2009)
- Staels & vd Broeck (2015)

Isolated Deficits

Bergmann & Wimmer (2008)

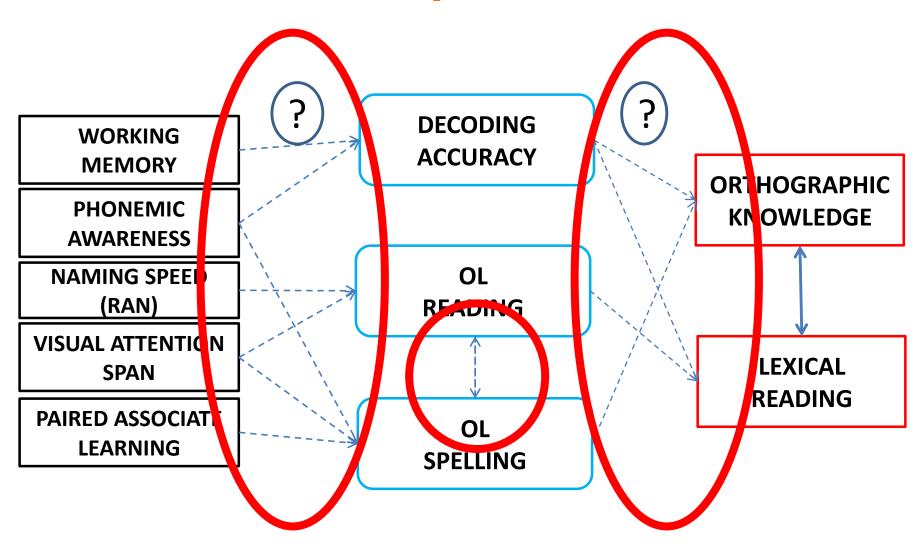
 dyslexic children slower than controls at reading even words they are orthographically familiar with (orthodecision test)

Isolated Reading & Spelling Deficits

- Moll & Landerl (2009)
- Bakos et al. (2020)
- Banfi et al. (2021)

Our Study

SOL: The Study of Orthographic Learning



Core Objective of the Study:

To clarify whether there is one or two OL systems

OL-Reading (OLR) vs. OL-Spelling (OLS)

Relationships to Observe

Methods

- Participants: 93 Spanish Grade 3 Children
- Tasks:
 - ✓ Orthographic Learning
 - Learning Phase (repeated exposure of novel words)
 - Testing Phase:
 - OLR Reading Speed Improvement (<u>Homophone</u> / <u>Length Effect</u>)
 - OLS Orthographic Choice
 - ✓ Cognitive Skills: RAN, Visual Skill, PAL, Phonemic Awareness, etc.
 - ✓ Literacy Skills
 - Reading: Lexical Reading & Decoding (Speed & Accuracy)
 - Spelling (Orthographic Knowledge)

Learning Phase & OLR: 3 NW Lists

List A - Target Hems:

- badiheto
- hojivo
- muvalla
- regehan
- vuetai

10 exposures to the targets

List B - Homophones:

- vadieto
- ogibo
- mubaya
- rejean
- buhetay

single exposure to homophones

+ List C: 1 list of short nonwords (calculate the length effect - 10 exps)

OLS: Orthographic Choice

☐ badiheto	☐ badieto	☐ vadieto	☐ vadiheto		
☐ mubaya	☐ muvaya	☐ muvalla	☐ muballa		
☐ hogivo	☐ ojibo	☐ ogibo	☐ hojivo		
1 Target spelling vs. 3 homophone foils (raging from 1 to 3 incon.)					

Correct spelling position counterbalanced

Each half of the sample aimed for different target spelling

Results

- OL-Reading
 - Length Effect:
 - 2-way rep. measures ANOV

List	M (SD)	
Long 1st Exp.	19.27 (5.42)	
Long 10th Exp.	14.52 (5.54)	
Short 1st Exp.	8.91 (2.84)	
Short 10th Exp.	7 16 (2,37)	
Homop. 1st Exp.	15.05 (3.87)	

- \circ Interac. F(1.91) = 33.16, p < .001
- Target vs. Homophone: t-test t(90) = -2.66, p < .01
- OL-Spelling
 - Mean Score: 7.5 (SD 2.51) range 3 14 (max 20)

Correlations (OL vs. Cognitive Skills)

- OL-Spelling = Orthographic Choice
- OL-Reading = Reading Speed of Target Spelling (10th exp.)
- Homophone Reading Speed (1st exp.) Partialed Out

• OLS Results, with a pinch of salt (skewed distribution, items too

hard)	OLS	RAN	PA	VPS	PAL
OLR	.02	.28**	12	.02	02
OLS		22*	.11	.27**	.23*

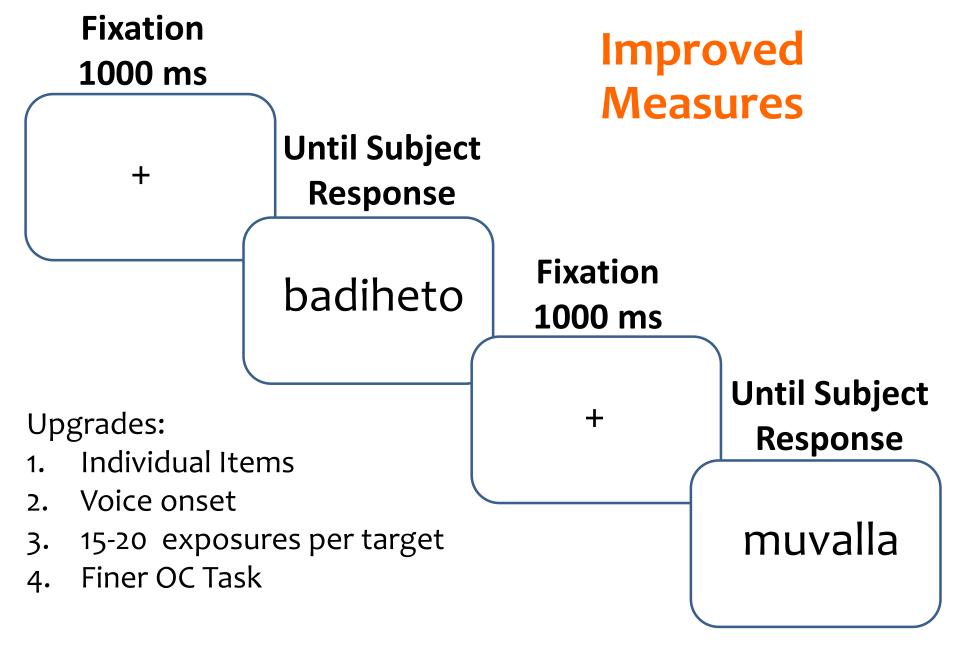
^{*} p < .05

OLS = Orthographic Learning in Spelling; OLR = Orthographic Learning in Reading RAN = Rapid Automatized Naming; PA = Phonemic Awareness; VPS = Visual Processing Skills PAL = Paired-Associated Learning

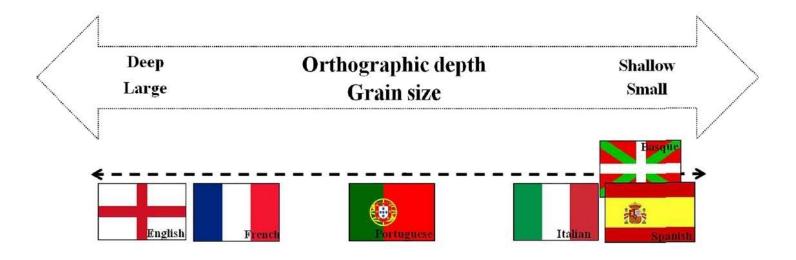
^{**} p < .01

Correlations (OL vs. Literacy Skills)

- OLR related to Lexical Reading
- OLS related to Lexical Reading and Orthographic Knowledge (again, pinch of salt)
- Multiple Linear Regressions corroborate same pattern


	Ortho Learning Spelling	HF Word Reading Speed	LF Word Reding Speed	NW Reading Speed	NW Reading Accuracy	Orthographic Knowledge
OLR	02	35**	41***	24*	12	.09
OLS		33**	25*	1	.02	.40***

^{*} p < .05 OLS = Orthographic Learning in Spelling; OLR = Orthographic Learning in Reading;


^{**} p < .01 HF = High Frequency (>100 in 1 million); LF = Low Frequency (between 1 and 5 in 1 million);

^{***} p < .01 NW = Non-word

Our Coming Cross-Linguistic Study

Orthographic Depth Effect

- Orthographic-Depth Hypothesis (Frost, Katz, & Bentin, 1987)
- Psycholinguistic Grain Size Theory (Ziegler & Goswami, 2005)
- Grain Size Accommodation Hypothesis (Lallier & Carreiras, 2017)

Straight of Gibraltar

In search of the cross-linguistic data

In Closing...

- Initial Evidence that OLR & OLS are unrelated
 - ¿Two OL Systems?
 - Other Potential Explanations:
 - ¿More exposures needed?
 - ¿General Visual-to-Verbal Speed Impairment (RAN)?
- New Study:
 - Improved Measures
 - Cross-linguistic Data = Effect of Orthographic Depth

Ezkerrik asko Muchas gracias Thank you

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 892111

